Place of Origin: | China |
Brand Name: | PAM-XIAMEN |
Minimum Order Quantity: | 1-10,000pcs |
---|---|
Packaging Details: | Packaged in a class 100 clean room environment, in single container, under a nitrogen atmosphere |
Delivery Time: | 5-50 working days |
Payment Terms: | T/T |
Supply Ability: | 10,000 wafers/month |
Laser Marking: | Upon Request | Conduction Type: | Semi Insulating |
---|---|---|---|
Product Name: | Indium Phosphide Substrate Wafer | Application: | 600±25um |
Wafer Diamter: | 4 Inch | Keyword: | Single Crystal Indium Phosphide Wafer |
Suface Finish: | P/E, P/P | Grade: | Prime Grade |
High Light: | test grade wafer,epi ready wafer |
Semi-Insulating , Iron-Doped Indium Phosphide Substrate , 4”, Prime Grade
Semi-Insulating, Indium Phosphide Substrate, 4”, Prime Grade
4"InP Wafer Specification | ||||
Item | Specifications | |||
Conduction Type | SI-type | |||
Dopant | Iron | |||
Wafer Diameter | 4" | |||
Wafer Orientation | 100±0.5° | |||
Wafer Thickness | 600±25um | |||
Primary Flat Length | 16±2mm | |||
Secondary Flat Length | 8±1mm | |||
Carrier Concentration | ≤3x1016cm-3 | (0.8-6)x1018cm-3 | (0.6-6)x1018cm-3 | N/A |
Mobility | (3.5-4)x103cm2/V.s | (1.5-3.5)x103cm2/V.s | 50-70cm2/V.s | >1000cm2/V.s |
Resistivity | N/A | N/A | N/A | >0.5x107Ω.cm |
EPD | <1000cm-2 | <1x103cm-2 | <1x103cm-2 | <5x103cm-2 |
TTV | <15um | |||
BOW | <15um | |||
WARP | <15um | |||
Laser Marking | upon request | |||
Suface Finish | P/E, P/P | |||
Epi Ready | yes | |||
Package | Single wafer container or cassette |
What is InP wafer?
Indium phosphide is a semiconducting material similar to GaAs and silicon but is very much a niche product. It’s very effective at developing very high-speed processing and is more expensive than GaAs because of the great lengths to gather and develop the ingredients. Let’s take a look at some more facts about indium phosphide as it pertains to an InP Wafer.
Spectroscopic Sensing aiming environmental protection and identification of dangerous substances
• A growing field is sensing based on the wavelength regime of InP. One example for Gas Spectroscopy is drive test equipment with real-time measurement of (CO, CO2, NOX [or NO + NO2]).
• Quick verification of traces of toxic substances in gases and liquids (including tap water) or surface contaminations down to the ppb level.
• Spectroscopy for non-destructive product control of e.g. food (early detection of spoiled foodstuff)
• Spectroscopy for many novel applications, especially in air pollution control are being discussed today and implementations are on the way.
![]() | Electron Hall mobility versus temperature for different doping levels. Bottom curve - no=Nd-Na=8·1017 cm-3; Middle curve - no=2·1015 cm-3; Top curve - no=3·1013 cm-3. (Razeghi et al. [1988]) and (Walukiewicz et al [1980]). |
![]() | Electron Hall mobility versus temperature (high temperatures): Bottom curve - no=Nd-Na~3·1017 cm-3; Middle curve - no~1.5·1016 cm-3; Top curve - no~3·1015 cm-3. (Galavanov and Siukaev[1970]). |
µn = (4.2÷5.4)·103·(300/T) (cm2V-1 s-1)
![]() | Hall mobility versus electron concentration for different compensation ratios. θ = Na/Nd, 77 K. Dashed curves are theoretical calculations: 1. θ = 0; 2. θ = 0.2; 3. θ = 0.4; 4. θ = 0.6; 5. θ = 0.8; (Walukiewicz et al. [1980]). Solid line is mean observed values (Anderson et al. [1985]). |
![]() | Hall mobility versus electron concentration for different compensation ratios θ =Na/Nd, 300 K. Dashed curves are theoretical calculations: 1. θ = 0; 2. θ = 0.2; 3. θ = 0.4; 4. θ = 0.6; 5. θ = 0.8; (Walukiewicz et al. [1980]). Solid line is mean observed values (Anderson et al. [1985]). |
µ=µOH/[1+(Nd/107)1/2],
where µOH=5000 cm2V-1 s-1,
Nd- in cm-3 (Hilsum [1974])
At 300 K, the electron Hall factor rn≈1 in n-InP.
for Nd > 1015 cm-3.
![]() | Hole Hall mobility versus temperature for different doping (Zn) levels. Hole concentration at 300 K: 1. 1.75·1018 cm-3; 2. 3.6·1017 cm-3; 3. 4.4·1016 cm-3. θ=Na/Nd~0.1. (Kohanyuk et al. [1988]). |
µpH~150·(300/T)2.2 (cm2V-1 s-1).
![]() | Hole Hall mobility versus hole density, 300 K (Wiley [1975]). The approximate formula for hole Hall mobility: µp=µpo/[1 + (Na/2·1017)1/2], where µpo~150 cm2V-1 s-1, Na- in cm-3 |
At 300 K, the hole factor in pure p-InP: rp~1
PAM-XIAMEN manufactures high purity single crystal Indium Phosphide Wafers for optoelectronics applications. Our standard wafer diameters range from 25.4 mm (1 inch) to 200 mm (6 inches) in size; wafers can be produced in various thicknesses and orientations with polished or unpolished sides and can include dopants. PAM-XIAMEN can produce wide range grades: prime grade, test grade, dummy grade, technical grade, and optical grade. PAM-XIAMEN also offer materials to customer specifications by request, in addition to custom compositions for commercial and research applications and new proprietary technologies.
Service
7X24-hour Telephone Consulting Service is available.
Reply and solution will be provided in 8 hours upon customer’s service request.
After-sales Support is available on a 7X24-hour basis, leaving no worries for customers.
Quality inspection from raw material to production, and delivery.
Professional quality control person, to avoid the unqualified products flowing to customer.
Strict inspection to Raw material, production, and delivery.
Full series of equipment in quality laboratory.
4 Inch Indium Phosphide Wafer P Type Test Grade InP Epi Ready Wafer
Single Crystal Indium Phosphide Wafer High Purity 4 Inch Prime Grade
Fe Doped InP Test Grade Wafer 4" Semi Insulating Optical Sensing Application
2 Inch Gallium Nitride Wafer Bulk GaN Substrates For LED HEMT Structure
2 Inch GaN Gallium Nitride Substrates Freestanding High Frequency Devices Use
2 Inch Bulk U Gallium Nitride Wafer Epi Ready Wafer For GaN Laser Diode
6H N Type SiC Wafer Dummy Grade C 0001 Bulk Crystal Growth <50 Arcsec FWHM
On Axis Sic Silicon Carbide Wafer 4 Deg Off 4H N Type Production Grade
Research Grade Silicon Carbide Wafer 6H SiC Semi Standard Wafer Cmp Polished