Place of Origin: | China |
Brand Name: | PAM-XIAMEN |
Minimum Order Quantity: | 1-10,000pcs |
---|---|
Packaging Details: | Packaged in a class 100 clean room environment, in single container, under a nitrogen atmosphere |
Delivery Time: | 5-50 working days |
Payment Terms: | T/T |
Supply Ability: | 10,000 wafers/month |
Product Name: | Indium Phosphide InP Wafer | Wafer Diamter: | 4 Inch |
---|---|---|---|
Conduction Type: | P Type | Grade: | Prime Grade |
Wafer Thickness: | 350±25um | Primary Flat Length: | 16±2mm |
Secondary Flat Length: | 8±1mm | Keyword: | Single Crystal Indium Phosphide Wafers |
High Light: | inp wafer,test grade wafer |
P Type , High Purity Single Crystal Indium Phosphide Wafer , 4”, Prime Grade
What is InP wafer?
Indium phosphide is a semiconducting material similar to GaAs and silicon but is very much a niche product. It’s very effective at developing very high-speed processing and is more expensive than GaAs because of the great lengths to gather and develop the ingredients. Let’s take a look at some more facts about indium phosphide as it pertains to an InP Wafer.
P Type, Indium Phosphide Wafer, 4”, Prime Grade
4"InP Wafer Specification | ||||
Item | Specifications | |||
Conduction Type | P-type | |||
Dopant | Zinc | |||
Wafer Diameter | 4" | |||
Wafer Orientation | 100±0.5° | |||
Wafer Thickness | 600±25um | |||
Primary Flat Length | 16±2mm | |||
Secondary Flat Length | 8±1mm | |||
Carrier Concentration | ≤3x1016cm-3 | (0.8-6)x1018cm-3 | (0.6-6)x1018cm-3 | N/A |
Mobility | (3.5-4)x103cm2/V.s | (1.5-3.5)x103cm2/V.s | 50-70cm2/V.s | >1000cm2/V.s |
Resistivity | N/A | N/A | N/A | >0.5x107Ω.cm |
EPD | <1000cm-2 | <1x103cm-2 | <1x103cm-2 | <5x103cm-2 |
TTV | <15um | |||
BOW | <15um | |||
WARP | <15um | |||
Laser Marking | upon request | |||
Suface Finish | P/E, P/P | |||
Epi Ready | yes | |||
Package | Single wafer container or cassette |
Transport Properties in High Electric Fields
![]() |
Field dependences of the electron drift velocity in InP, 300 K. Solid curve are theoretical calculation. Dashed and dotted curve are measured data. (Maloney and Frey [1977]) and (Gonzalez Sanchez et al. [1992]). |
![]() |
The field dependences of the electron drift velocity for high electric fields. T(K): 1. 95; 2. 300; 3. 400. (Windhorn et al. [1983]). |
![]() |
Field dependences of the electron drift velocity at different temperatures. Curve 1 -77 K (Gonzalez Sanchez et al. [1992]). Curve 2 - 300 K, Curve 3 - 500 K (Fawcett and Hill [1975]). |
![]() |
Electron temperature versus electric field for 77 K and 300 K. (Maloney and Frey [1977]) |
![]() |
Fraction of electrons in L and X valleys nL/no and nX/no as a function of electric field, 300 K. (Borodovskii and Osadchii [1987]). |
![]() |
Frequency dependence of the efficiency η at first (solid line) and at the second (dashed line) harmonic in LSA mode. Monte Carlo simulation. F = Fo + F1·sin(2π·ft) + F2·[sin(4π·ft)+3π/2], Fo=F1=35 kV cm-1, F2=10.5 kV cm-1 (Borodovskii and Osadchii [1987]). |
![]() |
Longitudinal (D || F) and transverse (D ⊥ F) electron diffusion coefficients at 300 K. Ensemble Monte Carlo simulation. (Aishima and Fukushima [1983]). |
![]() |
Longitudinal (D || F) and transverse (D ⊥ F) electron diffusion coefficients at 77K. Ensemble Monte Carlo simulation. (Aishima and Fukushima [1983]). |
InP based lasers and LEDs can emit light in the very broad range of 1200 nm up to 12 µm. This light is used for fibre based Telecom and Datacom applications in all areas of the digitalised world. Light is also used for sensing applications. On one hand there are spectroscopic applications, where a certain wavelength is needed to interact with matter to detect highly diluted gases for example. Optoelectronic terahertz is used in ultra-sensitive spectroscopic analysers, thickness measurements of polymers and for the detection of multilayer coatings in the automotive industry. On the other hand there is a huge benefit of specific InP lasers because they are eye safe. The radiation is absorbed in the vitreous body of the human eye and cannot harm the retina. InP lasers in LiDAR (Light Detection And Ranging) will be a key component for the mobility of the future and the automation industry.
PAM-XIAMEN is your go-to place for everything wafers, including InP wafers, as we have been doing it for almost 30 years! Enquire us today to learn more about the wafers that we offer and how we can help you with your next project. Our group team is looking forward to providing both quality products and excellent service for you!
About Us
Continuous improvement, seeking higher quality level. Our highly dedicated sales staff has never shied away from going that extra mile to meet and exceed the customer’s expectations. We treat our customers with the same loyalty and devotion, no matter the size of their business or industry.
We have a clean and tidy, wide workshop and a production and development team with rich experience, providing strong support for your r&d and production needs!All of our products comply with international quality standards and are greatly appreciated in a variety of different markets throughout the world. If you are interested in any of our products or would like to discuss a custom order, please feel free to contact us. We are looking forward to forming successful business relationships with new clients around the world in the near future.
4 Inch Indium Phosphide Wafer P Type Test Grade InP Epi Ready Wafer
Single Crystal Indium Phosphide Wafer High Purity 4 Inch Prime Grade
Fe Doped InP Test Grade Wafer 4" Semi Insulating Optical Sensing Application
2 Inch Gallium Nitride Wafer Bulk GaN Substrates For LED HEMT Structure
2 Inch GaN Gallium Nitride Substrates Freestanding High Frequency Devices Use
2 Inch Bulk U Gallium Nitride Wafer Epi Ready Wafer For GaN Laser Diode
6H N Type SiC Wafer Dummy Grade C 0001 Bulk Crystal Growth <50 Arcsec FWHM
On Axis Sic Silicon Carbide Wafer 4 Deg Off 4H N Type Production Grade
Research Grade Silicon Carbide Wafer 6H SiC Semi Standard Wafer Cmp Polished