Home ProductsSilicon Carbide Wafer

Dummy Grade Silicon Carbide Wafer 4H Semi Insulating SEMI Standard

Dummy Grade Silicon Carbide Wafer 4H Semi Insulating SEMI Standard

Dummy Grade Silicon Carbide Wafer 4H Semi Insulating SEMI Standard

Product Details:

Place of Origin: China
Brand Name: PAM-XIAMEN

Payment & Shipping Terms:

Minimum Order Quantity: 1-10,000pcs
Price: By Case
Delivery Time: 5-50 working days
Payment Terms: T/T
Supply Ability: 10,000 wafers/month
Contact Now
Detailed Product Description
Name: Semi Insulating SiC Wafer Keywords: Single Crystal Silicon Carbide Wafer
Grade: Dummy Grade Description: 4H SEMI Substrate
Size: 10mm X 10mm Application: Optoelectronic Industry
Sable Area: ≥ 90 % Edge Exclusion: 1 Mm
High Light:

semi standard wafer


sic wafer

4H Semi-Insulating Silicon Substrate, Dummy Grade,10mm x 10mm

Detail Application of Silicon Carbide

Because of SiC physical and electronic properties,silicon carbide based device are well suitable for short wavelength optoelectronic, high temperature, radiation resistant, and high-power/high-frequency electronic devices,compared with Si and GaAs based device.
Many researchers know the general SiC application:III-V Nitride Deposition;Optoelectronic Devices;High Power Devices;High Temperature Devices;High Frequency Power Devices.But few people knows detail applications, here we list some detail application and make some explanations:
1. SiC substrate for X-ray monochromators:such as,using SiC's large d-spacing of about 15 A;
2. SiC substrate for high voltage devices;
3. SiC substrate for diamond film growth by microwave plasma-enhanced chemical vapor deposition;
4. For silicon carbide p-n diode;
5. SiC substrate for optical window: such as for very short (< 100 fs) and intense (> 100 GW/cm2) laser pulses with a wavelength of 1300 nm. It should have a low absorption coefficient and a low two photon absorption coefficient for 1300 nm.
6. SiC substrate for heat spreader: For example,the Silicon carbide crystal will be capillary bonded on a flat gain chip surface of VECSEL (Laser) to remove the generated pump heat. Therefore, the following properties are important:
1) Semi-insulating type required to prevent free carrier absorption of the laser light;

2) Double side polished are preferred;
3) Surface roughness: < 2nm, so that the surface is enough flat for bonding;
7. SiC substrate for THz system application: Normally it require THz transparency
8. SiC substrate for epitaxial graphene on SiC:Graphene epitaxy on off axis substrate and on axis are both available, surface side on C-face or Si face are both available.
9. SiC substrate for process development loke ginding, dicing and etc
10. SiC substrate for fast photo-electric switch

Please contact us for more information

PolytypeSingle Crystal 4HSingle Crystal 6H
Lattice Parametersa=3.076 Åa=3.073 Å
 c=10.053 Åc=15.117 Å
Stacking SequenceABCBABCACB
Band-gap3.26 eV3.03 eV
Density3.21 · 103 kg/m33.21 · 103 kg/m3
Therm. Expansion Coefficient4-5×10-6/K4-5×10-6/K
Refraction Indexno = 2.719no = 2.707
 ne = 2.777ne = 2.755
Dielectric Constant9.69.66
Thermal Conductivity490 W/mK490 W/mK
Break-Down Electrical Field2-4 · 108 V/m2-4 · 108 V/m
Saturation Drift Velocity2.0 · 105 m/s2.0 · 105 m/s
Electron Mobility800 cm2/V·S400 cm2/V·S
hole Mobility115 cm2/V·S90 cm2/V·S
Mohs Hardness~9~9


4H Semi-Insulating Silicon Substrate, Dummy Grade,10mm x 10mm

DescriptionDummy Grade 4H SEMI Substrate
Diameter(50.8 ± 0.38) mm
Thickness(250 ± 25) μm (330 ± 25) μm (430 ± 25) μm
Resistivity (RT)>1E5 Ω·cm
Surface Roughness< 0.5 nm (Si-face CMP Epi-ready); <1 nm (C- face Optical polish)
FWHM<50 arcsec
Micropipe DensityA+≤1cm-2 A≤10cm-2 B≤30cm-2 C≤50cm-2 D≤100cm-2
Surface Orientation
On axis <0001>± 0.5°
Off axis 3.5° toward <11-20>± 0.5°
Primary flat orientationParallel {1-100} ± 5°
Primary flat length16.00 ± 1.70 mm
Secondary flat orientation Si-face:90° cw. from orientation flat ± 5°
C-face:90° ccw. from orientation flat ± 5°
Secondary flat length8.00 ± 1.70 mm
Surface FinishSingle or double face polished
PackagingSingle wafer box or multi wafer box
Usable area≥ 90 %
Edge exclusion1 mm


SiC crystal application

Many researchers know the general SiCapplication:III-V Nitride Deposition;OptoelectronicDevices;High Power Devices;High Temperature Devices;High Frequency Power Devices.But few people knows detail applications, We list some detail application and make some explanations.

Saturation Velocity:
Saturation velocity is the maximum velocity a charge carrier in a semiconductor, generally an electron, attains in the presence of very high electric fields[1]. Charge carriersnormally move at an average drift speed proportional to the electric field strength they experience temporally. The proportionality constant is known as mobility of the carrier, which is a material property. A good conductor would have a high mobility value for its charge carrier, which means higher velocity, and consequently higher current values for a given electric field strength. There is a limit though to this process and at some high field value, a charge carrier can not move any faster, having reached its saturation velocity, due to mechanisms that eventually limit the movement of the carriers in the material.

When designing semiconductor devices, especially on a sub-micrometre scale as used in modern microprocessors, velocity saturation is an important design characteristic.

Contact Details
Send your inquiry directly to us (0 / 3000)

Other Products